A self-certifiable architecture for critical systems powered by probabilistic logic artificial intelligence

Jacques Robin, Raul Mazó, Daniel Diaz Université Paris 1 Panthéon-Sorbonne

Henrique Madeira, Raul Barbosa

Universidade de Coimbra

Salvador Abreu Universidade de Évora

© 2019

Outline

- 1. The problem: certification of online learning critical systems
- 2. Versatile rules for self-certifiable AI
- 3. A self-certifiable autonomic architecture for critical AI
- 4. Limitations and future work

Certification of Al-powered critical systems

Current critical systems engineering

- Two human dependability experts negotiate: an engineer and an auditor
- On the basis of natural language documentation
- Presenting evidence that:
 - The critical system's probability of failure is below threshold required by the industry's dependability standard
 - The process to engineer the system correctly instantiates the abstract process prescribed by the standard
- Human industry-specific experts:
 - Write detailed, explicit requirements
 - Specify full software control flow
 - Write systematic tests against this flow
- Once deployed, system behaviour is assumed fixed
- Certification can hence occur only once, prior to deployment

Engineering AI-powered critical systems

- AI decomposed into 4 components:
 - Industry-independent inference engine
 - System-specific declarative knowledge base
 - Industry-independent machine learning algorithms
 - System-specfic data sets and mining process from which to learn declarative knowledge
- Control flow emerges through interaction of those 4 components
- Requirements may be specified only extensionally as training datasets
- Testing I/O pairs of AI component may not be manually specifiable
- Dependability analysis needs rethinking
- Online learning supports implementing smartest critical systems that autonomically self-adapt to context changes, some unforeseen at design time
- Each online learned knowledge sentence pushed to operational critical system triggers need for re-certfilication
- Certification automation crucial to contain re-certification cost

Versatile rule language for self-certifiable Al

- Probabilistic logic constraint solving rules (CHRiSM, Sneyers et al. 09,10)
- Engine apply rules to transform initial constraint store containing Constraint Satisfaction Problem (CSP) into final constraint store containing CSP Solution (CSPS) or failure (when CSP is overconstrained)
- ArrCSP and CSPS: $\bigwedge c_m(L_n)$ with L_n logical variables, c_m relations/constraints
- When CSP exactly constrained, CSPS: $\bigwedge L_n = k_n$ with k_n constants
- Constraint simplification/rewrite rule:

$$p(L_u, R_v) :: (\bigwedge_i g_i(L_w) \to \left(\bigwedge_j h_j(L_x)\right) \leftrightarrow \bigvee_k (q_k(L_k^y, R_k^z) :: \bigwedge_l b_k^l(L_k^t)))) \text{ with }$$

$$\bullet p(L_u, R_v), \ q_k(L_k^y, R_k^z) \text{ probability expressions in [0,1]}$$

- $\blacksquare R_v$, R_k^z random variables, L_u , L_w , L_x , L_y , L_k^y , L_k^t logical variables
- Constraint propagation/production rule:

$$p(L_u, R_v) :: (\bigwedge_i g_i(L_w) \to \left(\bigwedge_j h_j(L_x)\right) \to \bigvee_k (q_k(L_k^y, R_k^z) :: \bigwedge_l b_k^l(L_k^l)))$$

*Rule triggers with probability $p(L_u, R_v)$ when:

- - ightharpoonup Rule head $\bigwedge h_j(L_x) \subseteq$ store $\bigwedge c_m(L_n)$ (modulo variable pattern matching), and
 - ArrRule guard ArrArr $g_i(L_w)$ |= store ArrArr $c_m(L_n)$ (modulo variable pattern matching)
- Triggered:
 - ightharpoonup Simplification rule substitutes store subset matching rule head with rule body $\bigwedge b_k{}^l(L_k{}^t)$ (modulo variable pattern matching) with probability $q_k(L_k{}^y, R_k{}^z)$
 - ullet Propagation rule *adds* rule body $\bigwedge b_k{}^l(L_k{}^l)$ (modulo variable pattern matching) to store with probability $q_k(L_k{}^y,\ R_k{}^z)$, keeping store subset matching rule head in the store

Versatile rule engine for self-certifiable Al

- CHRISM engine queries:
 - ◆solve(S_i,S_f) to probabilistically search solution S_f to CSP S_i
 - **rob**(S_i ⇔ S_f , P) to compute probability P of S_f being solution to CSP S_i
 - ◆learn(E,R,D) to learn from set E of example pairs (CSP,CSPS) the probability distribution D of the random variables R in the probability expressions of a CHRISM rule based that transforms initial store CSP into final store CSPS
- Example CHRISM rule base encoding of classical alarm toy Bayesian net:
 - • $go \Rightarrow P_b$::burglary(yes) $\lor (1-P_b)$::burglary(no)
 - $go \Rightarrow P_e$::earthquake(yes) $\lor (1-P_e)$::earthquake(no)
 - $◆burglary(B) \land earthquake(E) \Rightarrow P_a(B,E)::alarm(yes) \lor (1-P_a(B,E))::alarm(no)$
 - $\bullet P_i(A)$::(alarm(A) \Rightarrow johncalls)
 - $\bullet P_m(A)$::(alarm(A) ⇒ marycalls)

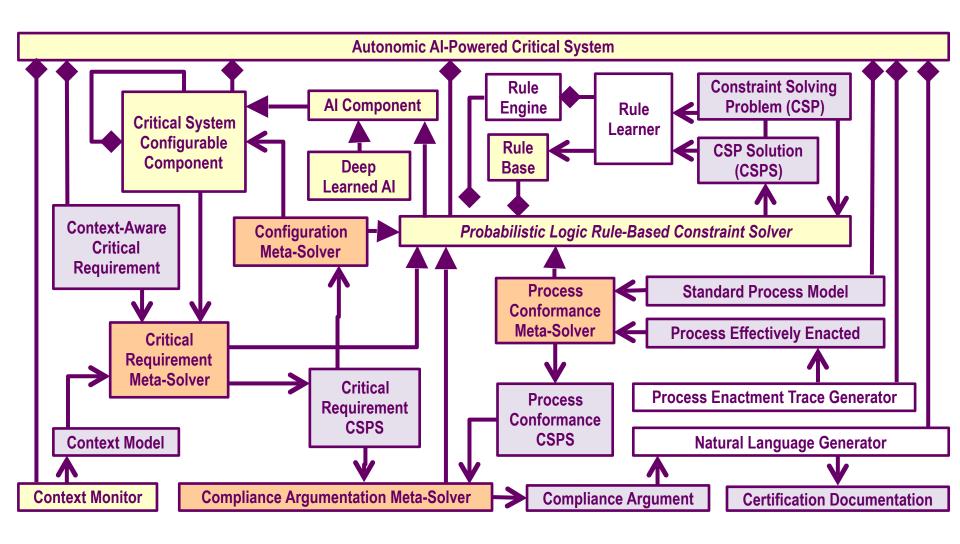
◆Query:

- \bullet prob({go} ⇔ {go, burglary(no), earthquake(yes), alarm(yes), marycalls}, P)
- ◆Instantiates P with $(1-P_h)*P_e*P_a(no,yes)*P_m(yes)$

Versatile rules for self-certifiable Al

- CHRISM rules generalize:
 - ◆CHR^v rules with probabilities
 - ◆CHR^y rules themselves generalize:
 - ◆CHR rules with disjunctive bodies (CHR[√] engine adds search to CHR engine) [Frühwirth 09]
 - Constraint Logic Programming (CLP) rules with guards which can serve as connecting interfaces in assembly of encapsulated rule-based components [Fages et al. 09]
 - *CHR rules themselves generalize term rewriting and production/business rules [Frühwirth 09]
 - Frame logics and description logics (ontologies) [Almeida, Robin 09], [Frühwirth 09]
 - Relational Bayes nets with guards and local logical semantic reading
 - Relational Bayes nets themselves generalize propositional Bayes nets with universally quantified logical variables
- CHRISM engine generalizes:
 - CHR
 very engine with probabilistic reasoning and machine learning
- - Optimization [Bistarelli et al. 04], constraint solving [Frühwirth 09]
 - ◆Deduction [Duck 12], abduction [Christiansen 08]
 - ◆Natural Language Processing [Christiansen 05]
 - Belief update [Thieslcher 06], belief revision [Jin, Thielscher 07]
 - Default reasoning [Almeida et al. 08], argumentative reasoning [Sneyers et al. 13]
 - Ontological reasoning [Almeida, Robin 09], [Frühwirth 09]

Autonomic architecture for self-certifiable Al



Limitations and future research agenda

- Not yet evaluated on case study
- Current CHRISM engine:
 - Lacks rule structure learning
 - Lacks interface with deep learned AI components
 - Implemented only in Prolog

- Evaluation on:
 - AI4EU railway control system cybersecurity case study
 - AI4EU radiology assistant case study
 - AI4EU optimised smart factory
- Basis for CHRISM engine extension feasibility:
 - Structure learning of ProbLog and CP-Logic rules [Riguzzi 18]
 - ProbLog interface with deep learning [Manhave et al 18]
 - ◆CHR to VHDL compiler [Triossi et al 12]
 - CHR compilers to Haskell, JavaScript, Java, C