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Introduction

• Robustness in Deep Learning models,
• Ability of a model to maintain performance under

uncertain, adversarial and unexpected conditions.
• Robustness testing plays a pivotal role in assessing

generalization performance and ensuring system safety,
particularly in critical applications such as autonomous
driving and medical diagnosis.

• Majority of research focuses on testing adversarial
robustness.
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Prior Works and Motivation

• Prior Works
• Prior works Evaluated the robustness of CNNs for

Computer Vision tasks[11, 5, 7].
• Overlay existing images with synthetic perturbations like

noise, rain, snow and fog.
• Vision Transformers (ViTs), although claimed to have

superior performances compared to CNNs, robustness
on a computer vision context has not been widely tested.

• Our Approach
• Use CARLA[2] to apply environmental conditions directly

into the simulation environment.
• simulate more realistic scenarios like reflections in

water, changing shadows and so on....
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Dataset

(a) Training (b) Rain (c) Fog (d) Sun

• Train-Validation : 60-min (in-simulation) drive at clear
weather conditions and 90◦ solar angle - 2700 images
for training, 750 images for validation.

• Test: A Challenging 10-second scenario at varied level
of fog, rains and solar angle, 75 variations, 300 images
per variation.

• HD images paired with pixel level semantic labels of 23
classes.
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Architectures
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Encoders
• ResNet [4]
• EfficientNet-B6 [8]
• MiT-B3 (Segformer) [9]

Decoders
• UNet [3]
• FPN [6]
• PSPNet [10]
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Synthetic Image Perturbations

• Weighted mIoU.
• Conditions

• Clear Weather
• solar angle - 90◦

(Noon)
• Noises

• Gaussian (G)
• Pixel Dropout (PD)

• Blurs
• Gaussian (G)
• Motion Blur (M)
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Adverse Weather Conditions

Figure: EfficientNet-B6 + UNet
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Adverse Weather Conditions

Figure: EfficientNet-B6 + FPN
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Adverse Weather Conditions

Figure: MiT + FPN
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Adverse weather condition

Angle 90 | Rain 0 | Fog 0 Ground Truth ResNet-50 MiT ConvNext EfficientNet

Angle -60 | Rain 0 | Fog 0

Angle 0 | Rain 0 | Fog 0
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Generate Fine-Tuning data

• Parameters
• Rain - 5 levels
• Fog - 5 levels
• Lighting - 0◦,90◦,−60◦

• 75 combinations to achieve complete coverage.
• Use 2-projection coverage [1] to identify best scenario.
• 100% coverage in 26 iterations.
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Fine-Tuning

• 40 images for each scenario.
• 35 for fine-tuning, 5 for validation.
• 5 images were added from previous iterations to avoid

drift.
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Fine-Tuning results

(a) EfficientNet-B6 (b) MiT-B3
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Fine Tuning Results

Figure: finetuning on individual scenarios - MiT-B3 model; results
under extreme weather conditions {rain(r) = 100, fog (f) = 100,
solar angle (a) = −60◦}
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Fine Tuning Results

Angle 90 | Rain 0 | Fog 0 Ground Truth Iteration-0 Iteration-1 Iteration-10 Iteration-26

Angle -60 | Rain 0 | Fog 0

Angle 0 | Rain 0 | Fog 0

Figure: FPN + EfficientNet-B6 backbone.
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Fine Tuning Results

Angle 90 | Rain 0 | Fog 0 Ground Truth Iteration-0 Iteration-1 Iteration-10 Iteration-26

Angle -60 | Rain 0 | Fog 0

Angle 0 | Rain 0 | Fog 0

Figure: FPN + MiT-B3 backbone
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Fine Tuning Results

Angle 90 | Rain 100 | Fog 100 Ground Truth Iteration-0 Iteration-1 Iteration-10 Iteration-26

Angle -60 | Rain 100 | Fog 100

Angle 0 | Rain 100 | Fog 100

Figure: FPN + EfficientNet-B6 backbone.
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Fine Tuning Results

Angle 90 | Rain 100 | Fog 100 Ground Truth Iteration-0 Iteration-1 Iteration-10 Iteration-26

Angle -60 | Rain 100 | Fog 100

Angle 0 | Rain 100 | Fog 100

Figure: FPN + MiT-B3 backbone
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Conclusions

• Transformer Robustness: Our study evaluated
segmentation architectures on a dataset generated in a
simulation environment, revealing comparable
robustness with CNN and Vision Transformer-based
backbones.

• EfficientNet-B6 Efficacy: Notably, EfficientNet B6
demonstrated competitive performance compared to a
Vision Transformer based backbone.

• Finetuning for enhanced robustness: Fine-tuning
with minimal training data under adverse conditions
emerged as a powerful technique for enhancing model
robustness.
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Future Works

• Model Variations and Architecture : Future research
should explore the applicability of our findings to fully
transformer-based models, CNNs with dilated
convolutions, and CNN architectures inspired by the
design of Vision Transformers (ViTs).

• Real World Validation : Replicating our experiments in
field tests using real-world data is crucial to determine
whether our conclusions hold in practical scenarios.
This step will validate the generalizability of our findings
to real conditions, ensuring the reliability of the
proposed model configurations.



The End
Questions? Comments?
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