# Towards Deep Anomaly Detection with Structured Knowledge Representations (Doctoral Track)

Konstantin Kirchheim

Deptartment of Computer Science Otto-von-Guericke University Magdeburg Germany

September 17, 2023

# Agenda

Motivation

**Research Objectives** 

**Proposed Solution** 

**Proof of Concept** 

Conclusion

## **Motivation**



Figure: Deer (Unknown Class) misclassified

## **Motivation**



Figure: Sheep (Known Class) not detected

## **Motivation**



### Figure: Moose (Unknown Class) not detected

## **Deep Anomaly Detection**

Anomaly Detection with Deep Neural Networks (DNNs)

- Out-of-Distribution Detection [1]
- Outlier Detection [2]
- Novelty Detection [3]

Autonomous Agents in Open Environments

- Have hypotheses about the world
- Example: "All stop signs are red"
- Violations anomalies are potentially safety-critical
  Should be detected

## Limitations of Current Deep Methods

- Not explainable
  - $\rightarrow$  Only provide score
  - $\rightarrow$  Has model actually learned what we want it to?
- Integrating prior knowledge is not straight-forward
  → Lots of data required to learn simple concepts
- Arguably no robust high-level reasoning

Constructing a problem that current methods can not solve is surprisingly simple...

# SuMNIST



### Figure: Sample of SuMNIST

|                           |          | AUROC ↑ | AUPR-IN ↑ | AUPR-OUT ↑ | FPR95↓ |
|---------------------------|----------|---------|-----------|------------|--------|
| Method                    | Backbone |         |           |            |        |
| Nearest Neighbor          | -        | 50.00   | 59.18     | 90.82      | 100.00 |
| Deep Nearest Neighbor [4] | ViT-L/16 | 51.19   | 18.81     | 82.21      | 94.34  |
| Mahalanobis               | -        | 50.00   | 59.18     | 82.31      | 100.00 |
| Mahalanobis [5]           | ViT-L/16 | 50.00   | 59.18     | 84.58      | 100.00 |
| Deep SVDD [6]             | -        | 49.32   | 18.07     | 81.28      | 95.14  |

Table: SOTA is close to random guessing

## Could reasoning emerge from scaling?

### Maybe, but:

- Studies on OOD detection: models reached limit (data/computation) [7]
- Scaling Transformers seems ineffective for reasoning tasks [8]



Figure: OOD Detection on CIFAR10

# **Hypothesis**

Problem:

World-Knowledge in DNNs is not structured

Using structured knowledge representations

- allows to integrate priors about structure of p(x)
- improves the robustness
- improves data efficiency
- increases explainability

### **Research Objectives**

### Classification

"All German stop signs are red octagons."

### **Object Detection**

"A human face is part of a human."

### **Temporal Dynamic**

"There is a limit to the velocity of objects."

### Structure Learning

Can we learn structure directly from the data?

# Structured Knowledge Representation



Figure: Proposed Architecture

# **Proof of Concept**



Figure: Sample of SuMNIST with Detected Objects

Hybrid Class:

- Saves all combinations of numbers observed during training
- Does not require class  $\rightarrow$  number mapping

Hybrid Sum:

- Calculate sum of all detected numbers
- ▶ Requires class → number mapping

# Experiments



### Figure: Sample of SuMNIST with Detected Objects

|                                                             |                        | AUROC ↑               | AUPR-IN ↑             | AUPR-OUT ↑            | FPR95 $\downarrow$  |
|-------------------------------------------------------------|------------------------|-----------------------|-----------------------|-----------------------|---------------------|
| Method                                                      | Backbone               |                       |                       |                       |                     |
| Nearest Neighbor                                            | -                      | 50.00                 | 59.18                 | 90.82                 | 100.00              |
| Deep Nearest Neighbor [4]                                   | ViT-L/16               | 51.19                 | 18.81                 | 82.21                 | 94.34               |
| Mahalanobis                                                 | -                      | 50.00                 | 59.18                 | 82.31                 | 100.00              |
| Mahalanobis [5]                                             | ViT-L/16               | 50.00                 | 59.18                 | 84.58                 | 100.00              |
| Deep SVDD [6]                                               | -                      | 49.32                 | 18.07                 | 81.28                 | 95.14               |
| Hybrid Memory ( <b>Ours</b> )<br>Hybrid Sum ( <b>Ours</b> ) | ResNet-18<br>ResNet-18 | 95.30<br><b>98.41</b> | 82.72<br><b>92.69</b> | 99.29<br><b>99.76</b> | 9.26<br><b>2.98</b> |

#### Table: Results

# Conclusion

- Current models can not reason robustly
- Scaling might not fix this
- We propose framework to address this
- Can outperform SOTA

Future Work:

- Large Datasets
- Videos
- Structure Learning



Figure: GitHub

## **References I**

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection: A survey. <u>ArXiv</u>, abs/2110.11334, 2021.

Charu C Aggarwal. Outlier Analysis. Springer, 2017.

Stanislav Pidhorskyi, Ranya Almohsen, Donald A Adjeroh, and Gianfranco Doretto.

Generative probabilistic novelty detection with adversarial autoencoders.

Advances in Neural Information Processing Systems, 31, 2018.

Liron Bergman, Niv Cohen, and Yedid Hoshen. Deep nearest neighbor anomaly detection. arXiv preprint arXiv:2002.10445, 2020.

## **References II**

 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin.
 A simple unified framework for detecting out-of-distribution samples and adversarial attacks.
 Advances in Neural Information Processing Systems, 31, 2018.

 Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft.
 Deep one-class classification.
 In International conference on machine learning, pages 4393–4402, PMLR, 2018.

## **References III**

 Dan Hendrycks, Steven Basart, Mantas Mazeika, Mohammadreza Mostajabi, Jacob Steinhardt, and Dawn Song.
 Scaling out-of-distribution detection for real-world settings. arXiv preprint arXiv:1911.11132, 2019.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt.

Measuring mathematical problem solving with the math dataset.

arXiv preprint arXiv:2103.03874, 2021.