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Motivation

Figure: Deer (Unknown Class) misclassified
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Motivation

Figure: Sheep (Known Class) not detected
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Motivation

Figure: Moose (Unknown Class) not detected
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Deep Anomaly Detection

Anomaly Detection with Deep Neural Networks (DNNs)
▶ Out-of-Distribution Detection [1]
▶ Outlier Detection [2]
▶ Novelty Detection [3]

Autonomous Agents in Open Environments
▶ Have hypotheses about the world
▶ Example: “All stop signs are red”
▶ Violations - anomalies - are potentially safety-critical

→ Should be detected
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Limitations of Current Deep Methods

▶ Not explainable
→ Only provide score
→ Has model actually learned what we want it to?

▶ Integrating prior knowledge is not straight-forward
→ Lots of data required to learn simple concepts

▶ Arguably no robust high-level reasoning

Constructing a problem that current methods can not solve
is surprisingly simple...
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SuMNIST

Figure: Sample of SuMNIST

AUROC ↑ AUPR-IN ↑ AUPR-OUT ↑ FPR95 ↓
Method Backbone

Nearest Neighbor - 50.00 59.18 90.82 100.00
Deep Nearest Neighbor [4] ViT-L/16 51.19 18.81 82.21 94.34
Mahalanobis - 50.00 59.18 82.31 100.00
Mahalanobis [5] ViT-L/16 50.00 59.18 84.58 100.00
Deep SVDD [6] - 49.32 18.07 81.28 95.14

Table: SOTA is close to random guessing
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Could reasoning emerge from scaling?

Maybe, but:

▶ Studies on OOD detection:
models reached limit
(data/computation) [7]

▶ Scaling Transformers
seems ineffective for
reasoning tasks [8]
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Figure: OOD Detection on
CIFAR10
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Hypothesis

Problem:
▶ World-Knowledge in DNNs is not structured

Using structured knowledge representations
▶ allows to integrate priors about structure of p(x)
▶ improves the robustness
▶ improves data efficiency
▶ increases explainability

10/18



Research Objectives

Classification
▶ “All German stop signs are red octagons.”

Object Detection
▶ “A human face is part of a human.”

Temporal Dynamic
▶ “There is a limit to the velocity of objects.”

Structure Learning
▶ Can we learn structure directly from the data?
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Figure: Proposed Architecture
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Proof of Concept

Figure: Sample of SuMNIST with Detected Objects

Hybrid Class:
▶ Saves all combinations of numbers observed during training
▶ Does not require class → number mapping

Hybrid Sum:
▶ Calculate sum of all detected numbers
▶ Requires class → number mapping
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Experiments

Figure: Sample of SuMNIST with Detected Objects

AUROC ↑ AUPR-IN ↑ AUPR-OUT ↑ FPR95 ↓
Method Backbone

Nearest Neighbor - 50.00 59.18 90.82 100.00
Deep Nearest Neighbor [4] ViT-L/16 51.19 18.81 82.21 94.34
Mahalanobis - 50.00 59.18 82.31 100.00
Mahalanobis [5] ViT-L/16 50.00 59.18 84.58 100.00
Deep SVDD [6] - 49.32 18.07 81.28 95.14

Hybrid Memory (Ours) ResNet-18 95.30 82.72 99.29 9.26
Hybrid Sum (Ours) ResNet-18 98.41 92.69 99.76 2.98

Table: Results
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Conclusion

▶ Current models can not reason
robustly

▶ Scaling might not fix this
▶ We propose framework to

address this
▶ Can outperform SOTA

Future Work:
▶ Large Datasets
▶ Videos
▶ Structure Learning

Figure: GitHub
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