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Core assumption in Deep Learning

For image classification: a neural network is trained on a dataset X𝑡𝑟𝑎𝑖𝑛 drafted
from an (unknown) distribution 𝒟
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What should happen when X𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is not drawn from 𝒟?
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Out-of-Distribution detection

“How to know where we will meet dragons?”

Spotting that 𝑥 ∈ X𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ≁ 𝒟 :
Out-of-Distribution detection
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Challenges

1. defining Out-of-Distribution?

2. leveraging Inside-of-Distribution definition?

3. reliability on the base model ?

4. ensuring your Out-of-Distribution detection is reliable?

5. justifying the Out-of-Distribution-ness of a sample to a user?
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Explainable AI for
Out-of-Distribution detection
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Our approach

Leveraging explainable AI: representation learning

1. Learning recurring patterns in the latent space of the classifier

2. Compute a confidence score based on how new patterns are correlated

Contextualized Out-of-Distribution Detection using Pattern Identification
(CODE)
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CODE overview

Figure 1: CODE inference overview. When processing a new sample 𝑥, the confidencemeasure
sums up the average contribution of the detectors from each class weighted by the
probability of 𝑥 belonging to that class.
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Cracking the CODE open - ingredients

Ingredients:

1. a neural network 𝑓 and 𝑣 its restriction to the last convolutional layer, of size
H ×W × D

2. 𝑝 1 × 1 convolutional kernels per class (detectors), of size 1 × 1 × D

3. a vizualisation technique (e.g. SmoothGrads)
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Cracking the CODE open - recipe

Kernels needs to: (1) correlates on a small part of the image (locality constraintℒ𝑙) and (2) correlate
to multiple activation locations (unicity constraint ℒ𝑢)
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Cracking the CODE open - recipe

Maximum correlation score H(𝑐)
𝑖 (𝑥) = max

𝑣∗∈𝑣(𝑥)
(𝑣∗ ∗ 𝑘(𝑐)𝑖 ). From [Xu-+22].

Given a new 𝑥
′
, correlation between 𝑣(𝑥

′
) with the distribution of 𝑣(𝑥), 𝑥 ∈ X𝑖𝑜𝑑
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Key points

1. Does not require an explicit
definition of
Out-of-Distribution

2. Does not require retraining an
existing model

3. Does provide a visual clue
along with the confidence
score
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methods: an open problem
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Existing approaches

Plenty of methods: adding a new score in the mix is of little interest if we cannot
compare it!

Existing methods either require retraining of the classifier (Bayesian based
approaches) or an explicit definition of Out-of-Distribution (which is usually not
available at inference time)
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Existing comparisons

Cross-dataset validation:

1. train/calibrate a score on a dataset X𝑖𝑜𝑑

2. evaluate it on another dataset considered Out-of-Distribution: X𝑜𝑜𝑑

Questions:

1. how is Out-of-Distribution defined?

2. how to assert the quality of a score independently of X𝑖𝑜𝑑 and X𝑜𝑜𝑑?
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What is a good Out-of-Distribution metric?

Hypothesis: metrics should increase with an
increased Out-of-Distribution-ness (e.g. grad-
ually increasing blur on all CIFAR-100 images)

If multiple metrics are similarly correlated for
the same perturbation, it shows they capture
the increase in Out-of-Distribution-ness
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Evaluation

1. OpenOOD [Yan+22] suite for cross-dataset Out-of-Distribution
evaluation to compare methods across multiple datasets; evaluating using
Area Under the Receiving Operator Curve (AUROC) score

2. Increasingly perturbating all images from a dataset X𝑖𝑜𝑑 using blur, gaussian
noise, brightness and rotations for consistencty of metrics under
perturbation; evaluating using Spearman Rank Correlation (SRC) score
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Cross-dataset Out-of-Distribution evaluation

OSR OoD Detection (Near-OoD / Far-OoD)

M-6 C-6 C-50 T-20 Avg. MNIST CIFAR-10 CIFAR-100 ImageNet Avg.

MSP∗ [HG17] 96.2 85.3 81.0 73.0 83.9 91.5 / 98.5 86.9 / 89.6 80.1 / 77.6 69.3 / 86.2 81.9 / 87.9

ODIN∗ [LLS18] 98.0 72.1 80.3 75.7 81.8 92.4 / 99.0 77.5 / 81.9 79.8 / 78.5 73.2 / 94.4 80.7 / 88.4

MDS∗ [Lee+18] 89.8 42.9 55.1 57.6 62.6 98.0 / 98.1 66.5 / 88.8 51.4 / 70.1 68.3 / 94.0 71.0 / 87.7

Gram∗ [SO20] 82.3 61.0 57.5 63.7 66.1 73.9 / 99.8 58.6 / 67.5 55.4 / 72.7 68.3 / 89.2 64.1 / 82.3

MaxLogit∗ [Hen+22] 98.0 84.8 82.7 75.5 85.3 92.5 / 99.1 86.1 / 88.8 81.0 / 78.6 73.6 / 92.3 83.3 / 89.7

KNN∗ [Sun+22] 97.5 86.9 83.4 74.1 85.5 96.5 / 96.7 90.5 / 92.8 79.9 / 82.2 80.8 / 98.0 86.9 / 92.4

FNRD [Hon+21] 59.4 68.2 58.4 54.3 60.1 84.8 / 97.1 70.2 / 71.5 54.6 / 58.5 75.4 / 87.5 71.3 / 78.7

CODE (p=4) 74.7 86.7 76.5 62.4 75.1 81.8 / 99.5 87.8 / 90.7 73.9 / 72.4 76.6 / 84.4 80.0 / 86.8

Table 1: Partial comparison of AUROC scores between CODE and state-of-the-art meth-
ods on a cross-dataset benchmark. Results with ∗ are extracted from [Yan+22] - keep-
ing only OoD-agnostic methods. bold = higher score.
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Consistency of CODE

Figure 2: Evolution of the average confidence score v. magnitude of the perturbation.
Curves in red indicate anomalous behaviours.
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Consistency of CODE

CIFAR10 CIFAR100 ImageNet Avg.

Noise ↓ Blur ↓ Bright. ↑ R+ ↓ R- ↑ Noise ↓ Blur ↓ Bright. ↑ R+ ↓ R- ↑ Noise ↓ Blur ↓ Bright. ↑ R+ ↓ R- ↑
MSP -0.22 -0.88 0.98 -0.55 0.56 0.33 -0.78 0.99 -0.32 0.31 0.71 -1.0 1.0 -0.77 0.85 0.54

ODIN -0.85 -0.7 0.18 -0.15 0.13 -0.15 -0.77 0.75 -0.22 0.21 0.12 -0.87 0.2 -0.81 0.81 0.45

MDS -1.0 0.41 0.84 -0.03 0.19 -1.0 0.68 0.84 -0.03 0.2 -1.0 0.98 -0.35 -0.16 0.11 0.20

Gram 1.0 -1.0 1.0 -0.15 -0.02 1.0 -0.83 1.0 -0.23 0.25 � � � � � 0.24∗

MaxLogit -0.62 -0.88 0.96 -0.33 0.33 0.0 -0.78 0.99 -0.22 0.22 0.65 -0.93 1.0 -0.78 0.78 0.54

KNN -0.36 -0.88 0.99 -0.46 0.4 -0.02 -0.79 1.0 -0.26 0.35 -0.99 -1.0 1.0 -0.5 0.5 0.63

FNRD -1.0 0.58 -0.99 -0.11 0.08 -1.0 0.49 -0.88 -0.21 0.13 -1.0 -0.85 0.99 -0.35 0.35 0.21

CODE -0.69 -0.88 1.0 -0.5 0.35 -0.95 -0.78 0.99 -0.3 0.29 -0.85 -0.93 1.0 -0.85 0.83 0.75

Table 2: Partial comparison of OoD methods on our perturbation benchmark. ↑ (resp. ↓)
= average confidence should increase (resp. decrease) with α. red = weak correlation or
unexpected sign of the correlation coefficient. bold = strong expected correlation. � =
timeout. Note that CODE is consistent accross almost all perturbations.
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Contextualized Out-of-Distribution

(a) Out-of-distribution image. (b) Inside-Of-Distribution image.

Figure 3: Explanations generated by CODE for ID and OoD samples.
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Limitations and future steps

1. CODE provides an Out-of-Distribution detection score that is consistent
accross two Out-of-Distribution modalities

2. We provide a benchmark for Out-of-Distribution score consistency checking

3. CODE is as good as the neural network internal representation

4. Contextualizations can only tell you so much (what happen when there is a
high confidence score, but the upsampling matches not our expectations?)

5. Applications to other problem classes (object detection, time series)
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Cracking the CODE open - recipe

Locality :

ℒ𝑙 = − ∑
(𝑥,𝑦)∈X𝑡𝑟𝑎𝑖𝑛

N
∑
𝑐=1

𝑝
∑
𝑖=1

1[𝑐=𝑦] ×max (P(𝑐)𝑖 (𝑥) ∗ 𝑢) (1)

Unicity :

ℒ𝑢 = ∑
(𝑥,𝑦)∈X𝑡𝑟𝑎𝑖𝑛

N
∑
𝑐=1

1[𝑐=𝑦] ×max (0,max (S(𝑐)(𝑥)) − 𝑡) (2)
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